rsiot/drivers_i2c/bmp180/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
//! Датчик давления BMP180

mod calculate_values;

use std::{sync::Arc, time::Duration};

use serde::{Deserialize, Serialize};
use tokio::{sync::Mutex, time::sleep};
use tracing::{info, trace, warn};

use crate::{
    executor::CmpInOut,
    message::{Message, MsgDataBound, PhyQuantity, ServiceBound},
};

use super::{I2cSlaveAddress, RsiotI2cDriverBase};

use calculate_values::calculate_values;

pub struct BMP180<TMsg, TService>
where
    TMsg: MsgDataBound,
    TService: ServiceBound,
{
    pub address: I2cSlaveAddress,
    pub fn_output: fn(BMP180Data) -> Vec<Message<TMsg>>,
    pub oversampling: BMP180Oversampling,
    pub cmp_in_out: CmpInOut<TMsg, TService>,
}

impl<TMsg, TService> BMP180<TMsg, TService>
where
    TMsg: MsgDataBound,
    TService: ServiceBound,
{
    pub async fn fn_process(&self, driver: Arc<Mutex<impl RsiotI2cDriverBase>>) {
        let calibration_data: CalibrationData = loop {
            let calibration_data = request_calibration_data(driver.clone(), self.address).await;
            match calibration_data {
                Ok(calibration_data) => break calibration_data.into(),
                Err(err) => {
                    warn!("Error getting calibration data for sensor BMP180: {}", err);
                    sleep(Duration::from_secs(2)).await;
                    continue;
                }
            }
        };

        loop {
            let temperature = request_temperature(driver.clone(), self.address).await;
            let Ok(temperature) = temperature else {
                warn!("Error reading temperature from BMP180: {temperature:?}");
                sleep(Duration::from_secs(2)).await;
                continue;
            };

            let pressure = request_pressure(driver.clone(), self.address, self.oversampling).await;
            let Ok(pressure) = pressure else {
                warn!("Error reading pressure from BMP180: {pressure:?}");
                sleep(Duration::from_secs(2)).await;
                continue;
            };

            let values = calculate_values(
                &calibration_data,
                &temperature,
                &pressure,
                self.oversampling,
            );
            let msgs = (self.fn_output)(values);
            for msg in msgs {
                self.cmp_in_out.send_output(msg).await.unwrap();
            }
            sleep(Duration::from_secs(2)).await;
        }
    }
}

/// Запрос данных калибровки. Необходимо выполнить один раз при запуске
async fn request_calibration_data(
    driver: Arc<Mutex<impl RsiotI2cDriverBase>>,
    address: I2cSlaveAddress,
) -> Result<ResponseCalibrationData, String> {
    let mut response;
    {
        let mut driver = driver.lock().await;
        response = driver
            .write_read(address, &[0xAA], 22, Duration::from_secs(2))
            .await?;
    }
    swap_msb_lsb(&mut response);
    let response =
        bincode::deserialize::<ResponseCalibrationData>(&response).map_err(|e| e.to_string())?;
    info!("Calibration data BMP180: {response:?}");
    Ok(response)
}

/// Запрос на измерение температуры
async fn request_temperature(
    driver: Arc<Mutex<impl RsiotI2cDriverBase>>,
    address: I2cSlaveAddress,
) -> Result<ResponseUncompensatedTemperature, String> {
    let mut response;
    {
        let mut driver = driver.lock().await;
        driver
            .write(address, &[0xF4, 0x2E], Duration::from_secs(2))
            .await?;
    }
    sleep(Duration::from_millis(5)).await;
    {
        let mut driver = driver.lock().await;
        response = driver
            .write_read(address, &[0xF6], 2, Duration::from_secs(2))
            .await?;
    }
    swap_msb_lsb(&mut response);
    let response = bincode::deserialize::<ResponseUncompensatedTemperature>(&response)
        .map_err(|e| e.to_string())?;
    trace!("BMP180 temperature: {response:?}");
    Ok(response)
}

/// Запрос на измерение давления
#[allow(non_snake_case)]
async fn request_pressure(
    driver: Arc<Mutex<impl RsiotI2cDriverBase>>,
    address: I2cSlaveAddress,
    oversampling: BMP180Oversampling,
) -> Result<ResponseUncompensatedPressure, String> {
    let response;
    let oversampling_command = match oversampling {
        BMP180Oversampling::UltraLowPower => 0x34,
        BMP180Oversampling::Standard => 0x74,
        BMP180Oversampling::HighResolution => 0xB4,
        BMP180Oversampling::UltraHighResolution => 0xF4,
    };
    {
        let mut driver = driver.lock().await;
        driver
            .write(
                address,
                &[0xF4, oversampling_command],
                Duration::from_secs(2),
            )
            .await?;
    }
    sleep(Duration::from_millis(26)).await;
    {
        let mut driver = driver.lock().await;
        response = driver
            .write_read(address, &[0xF6], 3, Duration::from_secs(2))
            .await?;
    }
    let UP = (((response[0] as u32) << 16) + ((response[1] as u32) << 8) + response[2] as u32)
        >> (8 - oversampling as u8);
    let response = ResponseUncompensatedPressure { UP };
    trace!("BMP180 pressure: {response:?}");
    Ok(response)
}

#[allow(non_snake_case)]
#[derive(Debug, Deserialize, Serialize)]
struct ResponseCalibrationData {
    AC1: i16,
    AC2: i16,
    AC3: i16,
    AC4: u16,
    AC5: u16,
    AC6: u16,
    B1: i16,
    B2: i16,
    MB: i16,
    MC: i16,
    MD: i16,
}

#[allow(non_snake_case)]
struct CalibrationData {
    AC1: f64,
    AC2: f64,
    AC3: f64,
    AC4: f64,
    AC5: f64,
    AC6: f64,
    B1: f64,
    B2: f64,
    #[allow(dead_code)]
    MB: f64,
    MC: f64,
    MD: f64,
}

impl From<ResponseCalibrationData> for CalibrationData {
    fn from(value: ResponseCalibrationData) -> Self {
        CalibrationData {
            AC1: value.AC1 as f64,
            AC2: value.AC2 as f64,
            AC3: value.AC3 as f64,
            AC4: value.AC4 as f64,
            AC5: value.AC5 as f64,
            AC6: value.AC6 as f64,
            B1: value.B1 as f64,
            B2: value.B2 as f64,
            MB: value.MB as f64,
            MC: value.MC as f64,
            MD: value.MD as f64,
        }
    }
}

#[allow(non_snake_case)]
#[derive(Debug, Deserialize, Serialize)]
struct ResponseUncompensatedTemperature {
    UT: u16,
}

#[allow(non_snake_case)]
#[derive(Debug, Deserialize, Serialize)]
struct ResponseUncompensatedPressure {
    UP: u32,
}

fn swap_msb_lsb(ve: &mut [u8]) {
    let mut index = 0;
    while index < ve.len() {
        ve.swap(index, index + 1);
        index += 2;
    }
}

#[derive(Debug)]
pub struct BMP180Data {
    pub temperature: PhyQuantity,
    pub pressure: PhyQuantity,
    pub altitude: PhyQuantity,
}

/// Кол-во измерений для формирования значен
#[derive(Clone, Copy, Debug)]
pub enum BMP180Oversampling {
    /// number of samples = 1
    UltraLowPower = 0,
    /// number of samples = 2
    Standard = 1,
    /// number of samples = 4
    HighResolution = 2,
    /// number of samples = 8
    UltraHighResolution = 3,
}